$\label{eq:products} {\sf Products} > {\sf RF ICs/Discretes} > {\sf RF ICs} > {\sf Silicon Amplifiers, Gain Blocks} > {\sf MSA-0636} \\ MSA-0636 \\ \end{array}$

5V Fixed Gain Amp, for Applications to 1 GHz

Description

Lifecycle status: Active

Features

The MSA-06 is a general purpose cascadable 50ohm low current gain block targeted for narrow and wide bandwidth IF amplifier applications. It is offered in a wide variety of plastic and ceramic packages. Bias: 5V, 16mA; f3dB = 1GHz; G = 19dB; NF = 3dB; P1dB = 2dBm; IP3i = -7dBm

MSA-0636 Cascadable Silicon Bipolar MMIC Amplifiers

Data Sheet

Description

The MSA-0636 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a cost effective, microstrip package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz $f_T, 25~{\rm GHz}~f_{MAX}, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.$

Features

- Cascadable 50 Ω Gain Block
- Low Operating Voltage: 3.5 V Typical V_d
- 3 dB Bandwidth: DC to 0.9 GHz
- High Gain: 19.0 dB Typical at 0.5 GHz
- Low Noise Figure: 2.8 dB Typical at 0.5 GHz
- Cost Effective Ceramic Microstrip Package

36 micro-X Package

Typical Biasing Configuration

MSA-0636	Absolute	Maximum	Ratings
----------	----------	---------	---------

Parameter	Absolute Maximum ^[1]		
Device Current	50 mA		
Power Dissipation ^[2,3]	200 mW		
RF Input Power	+13 dBm		
Junction Temperature	150°C		
Storage Temperature ^[4]	-65 to 150°C		

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{\rm CASE}$ = 25°C.
- 3. Derate at 6.5 mW/°C for $T_{\rm C} > 169^{\circ}{\rm C}.$
- 4. Storage above +150 $^{\circ}{\rm C}$ may tarnish the leads of this package making it difficult to solder into a circuit.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: I _d = 16 mA, Z ₀ = 50 Ω		Units	Min.	Тур.	Max.
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	19.0	20.5	22.0
ΔG_P	Gain Flatness	f = 0.1 to 0.5 GHz	dB		± 0.7	±1.0
f3 dB	3 dB Bandwidth		GHz		0.9	
VSWP	Input VSWR	f = 0.1 to 1.5 GHz			1.4:1	
VOWN	Output VSWR	f = 0.1 to 1.5 GHz			1.3:1	
NF	50 Ω Noise Figure	f = 0.5 GHz	dB		2.8	4.0
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 0.5 GHz	dBm		2.0	
IP ₃	Third Order Intercept Point	f = 0.5 GHz	dBm		14.5	
tD	Group Delay	f = 0.5 GHz	psec		200	
Vd	Device Voltage		V	3.1	3.5	3.9
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Note:

1. The recommended operating current range for this device is 12 to 30 mA. Typical performance as a function of current is on the following page.

Ordering Information

Part Numbers	No. of Devices	Comments
MSA-0636-BLKG	100	Bulk
MSA-0636-TR1G	1000	7" Reel

Thermal Resistance^[2,5]:

 $\theta_{jc} = 155^{\circ}C/W$

36 micro-X Package Dimensions

mm .xx = ± 0.13

